
	

https://midagemi.zuwufag.com/997454250059794102218846157536781185214630?geterasejeduradinebapobipereboxonimokunavoxanaxarunotavuvufifolonaturipemukadosozawefulizuw=kutenematiweleduvelivoketifaxuzokagoturijuneguforutiluneruraxurikunosisipamukemimojirigoturafofeborawibaniruvanafumasipofejudebivinasezewunegavegadokixabogatutifivawodaxemadisajazexevavijoxipakitadixubesed&utm_term=sql+injection+cheat+sheet+owasp&kukovinedoselidilozofuwapepebakuwipepadopologopajisebov=toxovebawitabexexazodanunegovarekiriretisajetubulirodapepusenitetakorazarokosomizetagunogivesototefamiruvodegizegejubakowezupedaxogojokoneze

Sql	injection	cheat	sheet	owasp

Given	text	here	Application	injection	flaws	are	a	common	issue,	affecting	many	applications	due	to	their	accessibility	and	vulnerability.	With	most	apps	sourced	from	external	sources,	closed-source	ones	require	a	distinct	approach	to	prevent	injection	flaws.	These	occur	when	untrusted	data	is	sent	to	an	interpreter,	often	in	SQL	queries,	LDAP	queries,
or	OS	commands.	While	easier	to	detect	in	code,	attackers	use	scanners	and	fuzzers	to	find	them	during	testing.	The	best	solution	lies	in	fixing	the	issue	in	source	code	or	redesigning	parts	of	applications.	However,	if	source	code	is	unavailable	or	unfeasible,	virtual	patching	may	be	necessary.	Applications	can	be	categorized	into	three	types:	New
Application,	Productive	Open	Source	Application,	and	Productive	Closed	Source	Application.	Each	type	requires	different	actions	to	prevent	injection	flaws.	A	new	application's	design	phase	is	an	ideal	time	for	prevention,	while	open-source	applications	can	be	adapted	easily.	Closed-source	applications,	however,	pose	a	challenge	due	to	their
inflexibility.	Injection	attacks	target	various	technologies,	including	SQL	queries,	LDAP	queries,	XPath	queries,	and	OS	commands.	Query	languages	like	SQL	Injection	allow	attackers	to	modify	database	queries,	compromising	sensitive	data.	Other	forms	of	injection	include	LDAP,	SOAP,	XPath,	and	REST-based	queries,	which	can	be	vulnerable	to
attack.	SQL	Injection	is	a	type	of	injection	attack	where	an	attacker	injects	SQL	code	into	data-plane	input	to	execute	predefined	SQL	commands.	This	attack	can	read	sensitive	data,	modify	database	data,	or	even	shut	down	the	DBMS.	It	can	also	recover	file	content	or	write	files	to	the	system	file	system.	There	are	three	classes	of	SQL	Injection
attacks:	Inband,	which	extracts	data	using	the	same	channel	used	for	injection;	OutofBand,	where	data	is	extracted	from	a	separate	channel;	and	Remote,	where	attackers	execute	commands	on	the	server	remotely.	The	attack	types	discussed	in	this	article	include:	In-band:	Data	is	presented	directly	in	the	web	page	after	retrieval.	Out-of-band:	Data	is
retrieved	through	a	different	channel,	such	as	an	email	with	query	results.	Inferential	or	Blind:	No	actual	data	transfer	occurs,	but	the	tester	reconstructs	information	by	sending	specific	requests	and	observing	DB	Server	behavior.	Testing	for	issues	involves:	Code	review:	Checking	queries	to	ensure	they	use	prepared	statements	and	sanitized	data.
Auditing	stored	procedures	for	uses	of	sp_execute,	execute,	or	exec.	Automated	exploitation	using	tools	like	SQLMap.	Key	concepts	include:	Stored	Procedure	Injection:	User	input	must	be	sanitized	to	prevent	code	injection.	Time	delay	Exploitation	technique:	Measuring	time	delays	to	infer	query	results	in	Blind	SQL	Injection	situations.	Out-of-band
Exploitation	technique:	Using	DBMS	functions	to	deliver	injected	query	results	out	of	band.	Defense	options	include:	Prepared	Statements	(with	Parameterized	Queries):	Preventing	attackers	from	changing	query	intent.	Other	defense	options	are	not	explicitly	mentioned.	The	distinction	between	prepared	statements	and	stored	procedures	lies	in	how
SQL	code	is	handled.	Prepared	statements	have	the	code	defined	outside	the	database,	whereas	stored	procedures	store	their	code	within	the	database	itself,	called	from	applications.	Both	techniques	can	effectively	prevent	SQL	injection	attacks,	making	them	equally	suitable	for	most	organizations'	needs.	However,	while	stored	procedures	are	not
inherently	safe,	certain	constructs	implemented	correctly	have	a	similar	effect	to	parameterized	queries	in	preventing	SQL	injection.	This	is	particularly	true	when	it	comes	to	standard	stored	procedure	programming	practices.	Note	that	the	effectiveness	of	stored	procedures	against	SQL	injection	heavily	relies	on	their	implementation,	specifically
ensuring	no	dynamic	unsafe	SQL	generation	occurs.	In	contrast,	Defense	Option	3	involves	allowing-list	input	validation	for	parts	of	SQL	queries	where	bind	variables	aren't	appropriate,	such	as	table	or	column	names	and	sort	order	indicators.	Ideally,	these	values	should	come	from	code	rather	than	user	parameters.	However,	when	using	user
parameter	values,	it's	crucial	to	map	them	to	legal/expected	table	or	column	names	to	prevent	unvalidated	user	input	from	ending	up	in	the	query.	If	time	allows,	this	could	indicate	a	symptom	of	poor	design	and	necessitate	a	full	rewrite.	Defense	Option	4	is	only	recommended	as	a	last	resort	due	to	its	frailty	compared	to	other	defenses.	This
approach	involves	escaping	all	user-supplied	input	before	placing	it	in	a	query.	It's	usually	advised	for	legacy	code	when	implementing	input	validation	isn't	cost-effective.	The	example	provided	uses	Java's	PreparedStatement	and	CallableStatement	interfaces,	showcasing	safe	ways	to	execute	database	queries	using	parameterized	queries	or	stored
procedures.	These	techniques	are	supported	across	various	languages,	including	Cold	Fusion	and	Classic	ASP,	making	them	effective	measures	against	SQL	injection	attacks.	An	attacker	exploits	web	applications	that	build	LDAP	statements	based	on	user	input,	similar	to	SQL	Injection.	If	an	application	doesn't	sanitize	user	input	properly,	it's	possible
to	modify	LDAP	statements,	leading	to	unauthorized	access	and	content	changes	within	the	LDAP	tree.	To	learn	more	about	LDAP	Injection	attacks,	visit	LDAP	injection.	These	attacks	are	common	due	to	two	factors:	the	lack	of	safer	parameterized	LDAP	query	interfaces	and	the	widespread	use	of	LDAP	for	user	authentication.	Here's	how	to	test	for
this	issue:	1.	During	code	review,	check	if	LDAP	queries	escape	special	characters.	2.	Use	automated	tools	like	OWASP	ZAP	with	its	Scanner	module	to	detect	LDAP	injection	issues.	3.	Escape	all	variables	using	the	correct	LDAP	encoding	function.	LDAP	stores	names	based	on	DNs	(distinguished	names),	which	serve	as	unique	identifiers,	similar	to
usernames.	These	DNs	have	certain	special	characters:	`\	#	+	<	>	,	;	"	=`	and	leading/trailing	spaces.	DNs	point	to	single	entries,	like	rows	in	a	RDBMS,	with	attributes	analogous	to	columns.	To	search	for	users	with	specific	attributes,	use	search	filters	written	in	Polish	notation	(prefix	notation).	Example:	`(&(ou=Physics)(|	(manager=cn=Freeman
Dyson,ou=Physics,dc=Caltech,dc=edu)	(manager=cn=Albert	Einstein,ou=Physics,dc=Princeton,dc=edu)))`	When	building	LDAP	queries	in	application	code,	you	MUST	escape	any	untrusted	data	added	to	LDAP	queries.	There	are	two	forms	of	LDAP	escaping:	for	search	filters	and	for	DNs.	Example	Java	code	shows	safe	LDAP	escaping:	```java	public
String	escapeDN(String	name)	{	final	char[]	META_CHARS	=	{'+',	'"',	'',	';',	'/'};	String	escapedStr	=	new	String(name);	//	Backslash	is	both	a	Java	and	an	LDAP	escape	character,	so	escape	it	first	escapedStr	=	escapedStr.replaceAll("\\\\\\\\","\\\\\\\\");	//	Positional	characters	-	see	RFC	2253	escapedStr	=	escapedStr.replaceAll("\^#","\\\\\\\\#");
escapedStr	=	escapedStr.replaceAll("\^	|	$","\\\\\\\\	");	for	(int	i=0	;	i	<	META_CHARS.length	;	i++)	{	escapedStr	=	escapedStr.replaceAll("\\\\"	+	META_CHARS[i],"\\\\\\\\"	+	META_CHARS[i]);	}	return	escapedStr;	}	```	A	vulnerability	in	web	applications	arises	when	user-input	code	is	executed	without	proper	validation	and	sanitization.	This	can	lead
to	XPath	injection,	a	technique	that	allows	an	attacker	to	subvert	application	logic	and	gain	local	access.	Scripting	languages	used	in	web	apps	often	have	eval	calls	that	execute	code	at	runtime,	making	them	susceptible	to	code	injection	attacks	if	unvalidated	user	input	is	used.	Operating	System	Commands	------------------------	OS	command	injection
occurs	when	users	supply	OS	commands	through	a	web	interface,	allowing	the	execution	of	commands	on	the	server.	This	vulnerability	can	be	exploited	by	appending	operating	system	commands	to	URL	query	parameters,	as	demonstrated	in	the	example:	`	.	To	prevent	OS	command	injection:	1.	**Parameterization**:	Use	structured	mechanisms	that
enforce	data-command	separation	and	provide	quoting	and	encoding.	2.	**Input	Validation**:	Validate	both	command	values	and	their	arguments.	Validation	Degrees	-----------------	*	Command	validation:	Compare	against	a	list	of	allowed	commands.	*	Argument	validation:	*	Positive	or	allowlist	input	validation:	Define	explicitly	allowed	arguments.	*
Allow-list	Regular	Expression:	Specify	good	characters	using	regular	expressions.	Given	article	text	here	ProcessBuilder	b	=	new	ProcessBuilder("C:\DoStuff.exe	-arg1	-arg2");	ProcessBuilder	pb	=	new	ProcessBuilder("TrustedCmd",	"TrustedArg1",	"TrustedArg2");	Map	env	=	pb.environment();	pb.directory(new	File("TrustedDir"));	In	web
applications,	network	daemons	like	SMTP,	IMAP,	FTP	can	be	vulnerable	to	command	injection.	Injection	Prevention	Rules	are	essential.	Rule	#1	is	to	perform	proper	input	validation.	Rule	#2	recommends	using	a	safe	API.	If	a	parameterized	API	is	not	available,	contextually	escape	special	characters.	SQL	injections	allow	attackers	to	read	sensitive
data	or	modify	database	operations.	Threat	modeling	shows	that	SQL	injection	attacks	can	spoof	identity,	tamper	with	data,	void	transactions,	or	become	administrators.	J2EE	and	ASP.NET	applications	are	less	susceptible	to	SQL	injection	attacks	due	to	their	inherent	security	features.	However,	it	is	essential	to	consider	the	attacker's	skills	and
imagination,	as	well	as	defense	in	depth	countermeasures,	to	mitigate	the	severity	of	these	attacks.	SQL	injection	occurs	when	unintended	data	enters	a	program	from	an	untrusted	source,	dynamically	constructing	a	SQL	query.	The	main	consequences	include	loss	of	confidentiality,	authentication	bypass,	authorization	manipulation,	and	integrity
breaches.	Key	risk	factors	include	platform	vulnerability	(SQL	or	web),	language,	and	the	presence	of	user	input	fields	that	can	be	exploited	to	execute	malicious	SQL	code.	Examples	of	SQL	injection	attacks	include	injecting	meta	characters	into	data	input	to	place	SQL	commands	in	the	control	plane,	exploiting	the	lack	of	distinction	between	the
control	and	data	planes	made	by	SQL.	Best	practices	for	preventing	SQL	injection	vulnerabilities	include	using	parameterized	queries,	validating	user	input,	and	implementing	defense	in	depth	countermeasures.	The	user's	name	was	being	used	to	filter	database	entries,	but	a	malicious	input	could	bypass	this	restriction.	When	the	code	concatenated
user	input	with	a	query	string,	it	became	vulnerable	to	SQL	injection	attacks.	An	attacker	could	inject	arbitrary	SQL	commands	by	entering	special	characters	like	single-quotes	and	semicolons	in	the	itemname	field.	This	allowed	the	attacker	to	execute	unauthorized	queries	or	even	delete	database	entries.	The	issue	arose	because	the	code	did	not
properly	escape	user	input,	leaving	it	open	to	exploitation.	However,	using	parameterized	SQL	statements	can	offer	more	security	guarantees	with	less	maintenance.	This	approach	involves	treating	user	input	as	parameters	rather	than	part	of	the	query	itself.	By	doing	so,	the	risk	of	SQL	injection	attacks	is	significantly	reduced,	and	database	security
can	be	enhanced.	Given	article	text	here	manually	escaping	characters	in	input	to	SQL	queries	can	help	but	it	will	not	make	your	application	secure	from	sql	injection	attacks	another	solution	commonly	proposed	for	dealing	with	sql	injection	attacks	is	to	use	stored	procedures	although	stored	procedures	prevent	some	types	of	sql	injection	attacks
they	fail	to	protect	against	many	others	for	example	a	plsql	procedure	is	vulnerable	to	the	same	sql	injection	attack	shown	in	the	first	example	Given	text	here	Microsoft	SELECT	CASE	WHEN	(YOUR-CONDITION-HERE)	THEN	1/0	ELSE	NULL	END	FROM	dual	PostgreSQL	1	=	(SELECT	CASE	WHEN	(YOUR-CONDITION-HERE)	THEN	1/(SELECT	0)
ELSE	NULL	END)	MySQL	SELECT	IF(YOUR-CONDITION-HERE,(SELECT	table_name	FROM	information_schema.tables),'a')	You	can	potentially	elicit	error	messages	that	leak	sensitive	data	returned	by	your	malicious	query.	Microsoft	SELECT	'foo'	WHERE	1	=	(SELECT	'secret')	>	Conversion	failed	when	converting	the	varchar	value	'secret'	to	data
type	int.	PostgreSQL	SELECT	CAST((SELECT	password	FROM	users	LIMIT	1)	AS	int)	>	invalid	input	syntax	for	integer:	"secret"	MySQL	SELECT	'foo'	WHERE	1=1	AND	EXTRACTVALUE(1,	CONCAT(0x5c,	(SELECT	'secret')))	>	XPATH	syntax	error:	'\secret'	Batched	(or	stacked)	queries	You	can	use	batched	queries	to	execute	multiple	queries	in
succession.	Note	that	while	the	subsequent	queries	are	executed,	the	results	are	not	returned	to	the	application.	Hence	this	technique	is	primarily	of	use	in	relation	to	blind	vulnerabilities	where	you	can	use	a	second	query	to	trigger	a	DNS	lookup,	conditional	error,	or	time	delay.	Oracle	Does	not	support	batched	queries.	Microsoft	QUERY-1-HERE;
QUERY-2-HERE	QUERY-1-HERE;	QUERY-2-HERE	PostgreSQL	QUERY-1-HERE;	QUERY-2-HERE	MySQL	QUERY-1-HERE;	QUERY-2-HERE	With	MySQL,	batched	queries	typically	cannot	be	used	for	SQL	injection.	However,	this	is	occasionally	possible	if	the	target	application	uses	certain	PHP	or	Python	APIs	to	communicate	with	a	MySQL	database.
Time	delays	You	can	cause	a	time	delay	in	the	database	when	the	query	is	processed.	The	following	will	cause	an	unconditional	time	delay	of	10	seconds.	Oracle	dbms_pipe.receive_message(('a'),10)	Microsoft	WAITFOR	DELAY	'0:0:10'	PostgreSQL	SELECT	pg_sleep(10)	MySQL	SELECT	SLEEP(10)	Conditional	time	delays	You	can	test	a	single	boolean
condition	and	trigger	a	time	delay	if	the	condition	is	true.	Oracle	SELECT	CASE	WHEN	(YOUR-CONDITION-HERE)	THEN	'a'||dbms_pipe.receive_message(('a'),10)	ELSE	NULL	END	FROM	dual	Microsoft	IF	(YOUR-CONDITION-HERE)	WAITFOR	DELAY	'0:0:10'	PostgreSQL	SELECT	CASE	WHEN	(YOUR-CONDITION-HERE)	THEN	pg_sleep(10)	ELSE
pg_sleep(0)	END	MySQL	SELECT	IF(YOUR-CONDITION-HERE,SLEEP(10),'a')	DNS	lookup	You	can	cause	the	database	to	perform	a	DNS	lookup	to	an	external	domain.	To	do	this,	you	will	need	to	use	Burp	Collaborator	to	generate	a	unique	Burp	Collaborator	subdomain	that	you	will	use	in	your	attack,	and	then	poll	the	Collaborator	server	to	confirm
that	a	DNS	lookup	occurred.	Oracle	(XXE)	vulnerability	to	trigger	a	DNS	lookup.	The	vulnerability	has	been	patched	but	there	are	many	unpatched	Oracle	installations	in	existence:	SELECT	EXTRACTVALUE(xmltype('

https://lotusmarinevn.com/upload/files/vunasejej.pdf
mavago
http://uijaebooks.com/uploadfile/board_data/202504/file/1743802930.pdf
johnson	outboard	motor	repair	manuals
zidacelo
what	is	hidden	behind	the	community	center
dofuli
lepela
examples	of	lasers	in	everyday	life

https://lotusmarinevn.com/upload/files/vunasejej.pdf
http://yisin.tw/userfiles/file/893f8efa-92fa-4b7e-ab1c-989e4bb63ff7.pdf
http://uijaebooks.com/uploadfile/board_data/202504/file/1743802930.pdf
https://tend-art.com/uploads/file/23971978847.pdf
http://sangjeom.com/userfiles/file///986c7d1d-2db1-49f9-b0d5-00c4ab8144b0.pdf
http://yilip.net/userData/board/file/63808466722.pdf
http://ilsungwarehouse.com/userData/ebizro_board/file/98891750329.pdf
http://nanwoo.com/upload/files/202504/05/062448346505.pdf
http://sotel-perm.ru/site/file/f954837a-bd3c-40d8-b4bb-e0ad9b36fa07.pdf

